
 75 

3. INNER PRODUCT 

SPACES 
 

§3.1. Definition 
 So far we’ve studied abstract vector spaces. These 

are a generalisation of the geometric spaces ℝ2 and ℝ3. 

But these have more 

structure than just that of a 

vector space. In ℝ2 and ℝ3 

we have the concepts of 

lengths and angles. In those 

spaces we use the dot 

product for this purpose, 

but the dot product only 

makes sense when we have 

components. In the absence 

of components we 

introduce something called 

an inner product to play 

the role of the dot product. 

We consider only vector 

spaces over ℂ, or some 

subfield of ℂ, such as ℝ. 

 An inner product space is a vector space V over 

ℂ together with a function (called an inner product) that 

associates with every pair of vectors in V a complex 

number u | v such that: 
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 (1) v | u = u | v for all u, v  V; 

 (2) u + v | w = u | w + v | w for all u, v, w  V; 

 (3) u | v = u | v for all u, v  V and all   F; 

 (4) v | v is real and  0 for all v  V; 

 (5) v | v = 0 if and only if v = 0. 

These are known as the axioms for an inner product space 

(along with the usual vector space axioms). 

NOTE: 

Axioms (2), (3) show that the function u → u | v is a 

linear transformation for a fixed v. 

However u → v | u is not linear since 

v | u = u | v = u | v = u | v = v | u. 

 

 A Euclidean space is a vector space over ℝ, where 

v | u  ℝ for all u, v and where the above five axioms 

hold. In this case we can simplify the axioms slightly: 

 (1) v | u = u | v for all u, v  V; 

 (2) u + v | w = u | w + v | w for all u, v, w  V; 

 (3) u | v = u | v for all u, v  V and all   F; 

 (4) v | v  0 for all v  V; 

 (5) v | v = 0 if and only if v = 0. 

 

Example 1: Take V = ℝn as a vector space over ℝ and 

define u | v = u1v1 + ... + unvn where 

u = (u1, …, un) and v = (v1, …, vn) 

(the usual dot product). This makes ℝn into a Euclidean 

space. 
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When n = 2 we can interpret this geometrically as the real 

Euclidean plane. When n = 3 this is the usual Euclidean 

space. 

 

Example 2: Take V = ℂn as a vector space over ℂ and 

define u | v = u1v1 + … + unvn. 

u = (u1, …, un) and v = (v1, …, vn). 

 

Example 3: Take V = Mn(ℝ), the space of n  n matrices 

over ℝ where A | B = trace(ATB).  

NOTE: This becomes the usual dot product if we 

consider an n  n matrix as a vector with n2 components, 

since trace(ATB) = 
=

n

ji

ijijba
1,

if A = (aij) and B = (bij). 

 

Example 4: Show that ℝ2 can be made into a Euclidean 

space by defining 

u1 | u2 = 5x1x2 − x1y2 − x2y1 + 5y1y2 

when u1 = (x1, y1) and u2 = (x2, y2). 

Solution: We check the five axioms. 

(1)  u2 | u1 = 5x2x1 − x2y1 − x1y2 + 5y2y1 =  u1 | u2. 

(2) If u3 = (x3, y3) then u1 + u2 | u3 

= 5(x1 + x2)x3 − x3(y1 + y2) − (x1 + x2)y3 + 5(y1 + y2)y3 

= 5x1x3 + 5x2x3 − x3y1 − x3y2 − x1y3 − x2y3 + 5y1y3 + 5y2y3 

= (5x1x3 − x3y1 − x1y3 + 5y1y3) + (5x2x3 − x3y2 − x2y3 + 5y2y3) 

= u1 | u3 + u2 | u3. 

(3) u1 | u2 = 5(x1)x2 − x2(y1) − (x1)y2 + 5(y1)y2 



 78 

                          =  [5x1x2 − x2y1 − x1y2 + 5y1y2] 

                          = u1 | u3. 

(4)  If v  = (x, y) then v | v = 5x2− 2xy + 5y2 

              = 5(x2 − 2xy/5 + y2) 

              = 5(x − y/5)2 + 24y2/25 

               0 for all x, y. 

(5) v | v = 0 if and only if x = y/5 and y = 0, that is, if and 

only if v = 0. 

 

 Now we move to a rather different sort of inner 

product, but one that still satisfies the above axioms. Inner 

product spaces of this type are very important in 

mathematics. 

 

Example 5: Take V to be the space of continuous 

functions of a real variable and define 

u(x) | v(x) = 

0

2

u(x)v(x) dx  

Axioms (1), (2) and (3) are fairly obvious. For (4) we need 

to show that 

0

2

v(x)2 dx  for all functionsv(x). This is 

obvious. Finally if 

0

2

v(x)2 dx then v(x) = 0 (the zero 

function). 
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§3.2. Lengths and Distances 
 The length of a vector in an inner product space is 

defined by: 

|v| = v | v  . 

(Remember that v | v is real and non-negative. The 

square root is the non-negative one.) So the zero vector is 

the only one with zero length. All other vectors in an inner 

product space have positive length. 

 

Example 6: In ℝ3, with the dot product as inner product, 

the length of (x, y, z) is x2 + y2 + z2 . 

 

Example 7: If V is the space of continuous functions of a 

real variable and 

u(x) | v(x) = 

0

1

u(x)v(x) dx  

then the length of f(x) = x2 is 

0

1

x4 dx  = 
1

5
 . 

 

The following properties of length are easily proved. 

 

Theorem 1: For all vectors u, v in an inner product space, 

and all scalars : 

(1) |v| = ||.|v|; 

(2) |v|  0; 

(3) |v| = 0 if and only if v = 0. ☺ 
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Theorem 2 (Cauchy Schwarz Inequality): 

|u | v|  |u|.|v|. 

Equality holds if and only if u = 
u | v v

|v|2
 . 

Proof: Let x = 
u | v

|v|2
 . 

Now |u − xv|2 = u − xv | u − xv 

                       = u | u − x v | u −x u | v + xx v | v 

                       = |u|2 − 2 xx |v|2 + xx |v|2 

                       = |u|2 − |x|2|v|2 

                       = |u|2 − 
|u | v|2

|v|2
  

Since |u − xv|2  0, |u|2|v|2  |u | v|2. ☺ 

 

Example 8: In ℝn we have ( ) ( )( ) 
222

iiii yxyx . 

 

Example 8: 











0

1

f(x)g(x) dx  
2

  











0

1

f(x)2 dx  











0

1

g(x)2 dx  . 
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 The Triangle Inequality in the Euclidean plane 

states no side of a triangle can be longer than the sum of 

the other two sides. It is usually proved geometrically, or 

appealing to the principle that the shortest distance 

between two points is a straight line. In a general inner 

product space we must prove it from the axioms. 

 

Theorem 3 (Triangle Inequality): 

For all vectors u, v:  |u + v|  |u| + |v|. 

Proof: |u + v|2 = u + v | u + v 

                        = u | u + v | v + u | v + v | u 

                        = |u|2 + |v|2 + 2Re(u | v) 

                         |u|2 + |v|2 + 2|u | v| 

                         |u|2 + |v|2 + 2|u|.|v| 

                         (|u| + |v|)2 

So |u + v|  |u| + |v|. ☺ 

 

 We define the distance between two vectors u, v to 

be |u − v|. The distance version of the Triangle Inequality 

is as follows. If u, v, w are the vertices of a triangle in an 

inner product space V then |u − w|  |u − v| + |v − w|. It 

follows from the length version as 

u − w = (u − v) + (v − w). 

If we take u, v, w to be vertices of a triangle in the 

Euclidean plane this gives the geometric version of the 

Triangle Inequality. 
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§3.3. Orthogonality 
 It isn’t possible to define angles in a general inner 

product space, because inner products need not be real. 

But in any Euclidean space we can define these 

geometrical concepts even if the vectors have no obvious 

geometric significance. 

 

Now we can use the Cauchy Schwarz inequality to define 

the angle between vectors. If u, v are non-zero vectors the 

angle between them is defined to be cos−1







u | v

|u|.|v|
 . The 

Cauchy Schwarz inequality ensures that 
u | v

|u|.|v|
 lies 

between −1 and 1. The angle between the vectors is /2 if 

and only if u | v = 0. 

 

Example 9: Suppose we define the inner product between 

two continuous functions by: 

u(x) | v(x) = 

0

/2

u(x)v(x) dx . 

If u(x) = sin x and v(x) = x find the angle, between them 

in degrees. 

Solution:  u(x) | v(x) = 

0

/2

x sin x dx  

                                     =[ ]sin x − xcos x  
/2

0   

                                         (integrating by parts) 
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                                  = 1. 

u(x) | u(x) = 

0

/2

sin2x dx  

                    = 




0

/2

1 − cos 2x

2
 dx  

                    = 






x

2
 + 

1

4
 sin 2x  

/2

0  

                     = 


4
 . 

Hence |u(x)| = 


2
 . 

Now v(x) | v(x) = 

0

/2

x2 dx  

                             = 






x3

3
 
/2

 

0
 

                             = 
3

24
  so 

|v(x)| = 
 

2 6
 . 

Hence the angle between the two functions is  where: 

cos  = 
4 6

2  . 

                                              0.9927. 

Hence , in degrees, is approximately 6.9272. 
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NOTE: Measuring the angle between two functions in 

degrees is rather useless and is done here only as a 

curiosity. By far the major application of angles in 

function spaces is to orthogonality. This is a concept that 

is meaningful for all inner product spaces, not just 

Euclidean ones. 

  

 Two vectors in an inner product space are 

orthogonal if their inner product is zero. The same 

definition applies to Euclidean spaces, where angles are 

defined, and there orthogonality means that either the 

angle between the vectors is /2 or one of the vectors is 

zero. So orthogonality is slightly more general than 

perpendicularity. 

 

A vector v in an inner product space is a unit vector if 

Its length is 1. 

 

We define a set of vectors to be orthonormal if they are 

all unit vectors and each one is orthogonal to each of the 

others. An orthonormal basis is simply a basis that is 

orthonormal. Note that there is no such thing as an 

‘orthonormal vector’. The property applies to a whole set 

of vectors, not to an individual vector. 

 

Theorem 4: An orthonormal set of vectors {v1, …, vn} is 

linearly independent. 

Proof: Suppose 1v1 + … + nvn = 0. 

Then 1v1 + … + nvn | vr = 0 for each r. 
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But 1v1 + … + nvn | vr = 1v1 | vr + … + nvn | vr 

                                        = rvr | vr = r 

since vr is orthogonal to the other vectors in the set and vr 

is a unit vector. Hence each r = 0. ☺ 

 

 Because of the above theorem, if we want to show 

that a set of vectors is an orthonormal basis we need only 

show that it is orthonormal and that it spans the space. 

Linear independences come free. 

 

 Another important consequence of the above 

theorem is that it is very easy to find the coordinates of a 

vector relative to an orthonormal basis. 

 

Theorem 5: If 1, 2, ..., n is an orthonormal basis for 

the inner product space V, and v  V, then 







v

 
 = 









v|1

v|2

….

v|n

 . 

Proof: Let v = x11 + x22 + ... + xnn. 

Then v | i = 
j

xj i | j  

                      = xj j | j = xj 

since the i are orthonormal. ☺ 
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Example 10: 

Show that the set 






1

3,  
2

3
,  

2

3
 , 









− 
2

3
,  

2

3
,  − 

1

3
 , 









− 
2

3
,  − 

1

3
,  

2

3
  is 

an orthonormal basis for ℝ3 with the usual inner product. 

Solution: They are clearly mutually orthogonal and, since 
1

9
 + 

4

9
  + 

4

9
  = 1 they are all unit vectors. Hence they are 

linearly independent and so span a 3-dimensional 

subspace of ℝ3. Clearly this must be the whole of ℝ3. 

 

Example 11: Find the coordinates of (3, 4, 5) relative to 

the above orthonormal basis. 

Solution: 

(3, 4, 5) | (1/3, 2/3, 2/3) = 7 

(3, 4, 5) | (−2/3, 2/3, −1/3) = −1 

(3, 4, 5) | (−2/3, −1/3, 2/3) = 0. 

Hence the coordinates are (7, −1, 0). 

In other words, (3, 4, 5) = 7






1

3
,  

2

3
,  

2

3
  −  









− 
2

3
,  

2

3
,  − 

1

3
 . 

 

Example 12: In ℂ2 as an inner product space with the 

inner product 

(x1, y1) | (x2, y2) = x1x2 + y1y2 

show that the vectors  u = (2 − i, 3 − 4i) and 

v = (3 − 4i, −2/5 + 11/5 i) are orthogonal. 

Use them to find an orthonormal basis for ℂ2. 

Solution: (2 − i)(3 + 4i) + (3 − 4i)(−2/5 − 11/5 i) 

= 10 + 5i −10 − 5i = 0. 

|u|2 = |(2 − i)|2 + |(3 − 4i)|2 = 5 + 25 = 30, so |u| = 30 . 
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|v|2 = |3 − 4i|2 + |(−2/5) + (11/5)i|2 

      = 9 + 16 + 
4

25 + 
121

25  

      = 30 

so |v| = 30 . 

Hence 
1

30
 u, 

1

30
 v is an orthonormal basis. 

 

Theorem 6 (GRAM-SCHMIDT): 

Every finite-dimensional inner product space V has an 

orthogonal basis. 

Proof: We prove this by induction on the dimension of V. 

If dim(V) = 0 then the empty set is an orthonormal basis. 

Suppose that every vector space of dimension n has an 

orthonormal basis and suppose that V is a vector space of 

dimension n + 1. 

Let (v1, …, vn+1) be a basis for V and let U = v1, …, vn. 

By the induction hypothesis U has an orthogonal basis 

{u1, …, un}. 

Define u = vn+1 − 
vn+1 | u1

|u1|2
 u1 − …  

                                           … − 
vn+1 | un

|un|2
 vn+1 | unun. 

Then for each i, u | ui 

= vn+1 | ui − 
vn+1 | u1

u1 | u1
 u1 | ui − 

vn+1 | u2

u2 | u2
 u2 | ui − … 

                 … − 
vn+1 | uj

uj | uj
 uj | uj −  … 

vn+1 | un

un | uj
 un | ui 
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= vn+1 | uj −  
vn+1 | uj

uj | uj
 uj | uj  

                                              since ui | uj = 0 when i  j 

= vn+1 | uj − vn+1 | uj 

= 0. 

So u is orthogonal to each of the ui. Define un+1 = u. Then 

(u1, u2, …, un+1) is an orthogonal basis for V. 

Corollary: Every finite-dimensional inner product space 

V has an orthonormal basis. 

Proof: Having obtained an orthogonal basis (u1, …, un) 

we simply So we define wi = 
1

|ui|
 ui for each i and so obtain 

an orthonormal basis (w1, …, wn) for V. ☺ 

 

 This is not only a proof of existence, it provides a 

recipe for converting any basis into an orthonormal one. 

In practice it is inconvenient to normalise the vectors 

(divide by their length) as we go, because we will have to 

carry these lengths along into our subsequent 

calculations. It’s much easier to produce an orthogonal 

basis and then to normalise at the end. 

 

Basis (vi) 

Orthogonal basis (ui) 

Orthonormal basis (wi) 
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GRAM-SCHMIDT ALGORITHM 

(1) LET u1 = v1. 

(2) FOR r = 2 TO n, LET 

ur = vr − 
vr|u1

|u1|
2  u1 − 

vr|u2

|u2|
2  u2 − ...... − 

vr|ur−1

|ur−1|2
 ur−1. 

Multiply by a convenient factor to remove fractions. 

(4) FOR r = 1 TO n, LET wr = 
ur

|ur|
 . 

 

Example 13: Find an orthonormal basis for 

V = (1, 1, 1, 1), (1, 2, 3, 4), (1, −1, 1, 0). 

Solution: 

 1 2 3 

v (1, 1, 1, 1) (1, 2, 3, 4) (1, −1, 1, 0) 

u (1, 1, 1, 1) (−3, −1, 1, 3) (12, −26, 16, −2) 

|u| 2 25 6 30  

w 1

2
 (1, 1, 1, 1) 

1

2 5
 (−3, −1, 1, 3) 

1

3 30
 (6, −13, 8, −1) 

 

WORKING: u1 = v1. 

 u2 = v2 − 
v2|u1

|u1|
2  u1 

         = (1, 2, 3, 4) − 
10

4
 (1, 1, 1, 1) 

      = (1, 2, 3, 4) − 
5

2
 (1, 1, 1, 1). 

u2 = (2, 4, 6, 8) − 5(1, 1, 1, 1) = (−3, −1, 1, 3). 
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For an orthogonal basis, any vector can be multiplied by 

a convenient non-zero scalar to eliminate fractions. 

 

u3 = v3 − 
v3|u1

|u1|
2  u1 − 

v3|u2

|u2|
2  u2 

     = (1, −1, 1, 0) − 
1

4 (1, 1, 1, 1) − 






−1

20
 (−3, −1, 1, 3). 

Multiply by 20, so now 

u3 = (20, −20, 20, 0) − (5, 5, 5, 5) + (−3, −1, 1, 3) 

    = (12, −26, 16, −2). 

 

Example 14: Let V be the function space 1, x, x2 made 

into a Euclidean space by defining 

u(x) | v(x) = 

0

1

u(x)v(x) dx  

 Find an orthonormal basis for V. 

Solution: 

 1 2 3 

v 1 x x2 

u 1 2x − 1 6x2 − 6x + 1 

|u| 1 1

3
  

1

5
  

w 1 3 (2x − 1) 5 (6x2 − 6x + 1) 

 

WORKING: u1(x) = v1(x) = 1 

v2(x) | u1(x) = 

0

1

x dx = 






1

2 x2  

1

 

0
 = 

1

2
 . 
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|u1(x)|2 = 

0

1

 1 dx = [ ]x  
1

0 = 1. 

u2(x) = v2(x) − 
1

2 .1 = x − 
1

2 . 

Multiply by 2, so now u2(x) = 2x − 1. 

v3(x) | u1(x) = 

0

1

 x2 dx = 






1

3x3  

1

 

0
 = 

1

3 . 

v3(x) | u2(x) = 

0

1

 x2(2x − 1) dx = 

0

1

 (2x3 − x2) dx  

                      = 






1

2x4 − 
1

3x3  

1

 

0
 = 

1

6 . 

|u2(x)|2 = 

0

1

 (2x − 1)2 dx = 

0

1

 (4x2 − 4x + 1) dx  

            = 






4

3x3 − 2x2 + x  

1

 

0
 = 

1

3 . 

u3(x) = x2 − 
1

3  − 
1

2 (2x − 1) 

Multiplying by 6 we take u3(x) = 6x2 − 2x − x + 3 

                                                  = 6x2 − 6x + 1.  

|u3(x)|2 = 

0

1

(6x2 − 6x + 1)2 dx  

            = 

0

1

(36x4 − 72x3 + 48x2 − 12x + 1) dx  



 92 

                = 






36

5 x5 − 18x4 + 16x3 − 6x2 + x  

1

 

0
  

                = 
36

5  − 18 + 16 − 6 + 1 = 
1

5  

 

§3.4. Fourier Series 
 The most important applications of inner product 

spaces involve function spaces with the inner product 

defined by means of an integral. Fourier Series are infinite 

series in an infinite dimensional function space. However 

it’s not appropriate here to give more than a cursory 

overview because to discuss them properly requires not 

only a good knowledge of integration, but a deep 

understanding of the convergence of infinite series. 

 For any positive integer n the functions 1, cos nx 

and sin nx are periodic, with period 2. 

Take the space T spanned by all of these functions. 

So T = 1, cos x, cos 2x, ..., sin x, sin 2x, .... 

Define the inner product on T as 

u(x) | v(x) = 

0

2

u(x)v(x) dx  

T is an infinite dimensional vector space. Clearly, for 

every function f(x)  T, f(x + 2) = f(x). If f(x) is a 

continuous function for which f(x + 2) = f(x) we may ask 

whether f(x)  T. 

 

The answer is usually no. Such an f(x) may not be a linear 

combination of 1, cos x, cos 2x, ..., sin x, sin 2x, ... But 
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remember that a linear combination is a finite linear 

combination. It may well be that f(x) can be expressed as 

an infinite series involving these functions. That is, we 

might have f (x) = a0 + 
n=1



(an cos nx + bn sin nx) . 

 

 Such a series is called a Fourier series, named after the 

French mathematician Joseph de Fourier [1768–1830]. Of 

course, for this to make sense we would need this series 

to converge, which why we need to know a lot about 

infinite series in order to study Fourier series. But suppose 

we limit the values of n. 

 

Let TN = 

1, cos x, cos 2x, ..., cos Nx, sin x, sin 2x, ..., sin Nx. 

We can show that these 2N + 1 functions are linearly 

independent. In fact, they are mutually orthogonal. So TN 

is a 2N + 1 dimensional Euclidean space. 

 For n > 0, |cos nx|2 = 

0

2

cos2nx dx =  and 

                            |sin nx|2 = 

0

2

sin2nx dx = . 

Clearly |1|2 = 

0

2

 dx  = 2. 

(Remember that |1| here is not the absolute value but 

rather the length of the function 1.) 
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By Theorem 5, if F(x) = a0 + 
n=1

N

(an cos nx + bn sin nx)  

then a0 = 
F(x) | 1

|1|2
 = 

1

2
 

0

2

F(x) dx  and, if n > 0, 

an = 
F(x) | cos nx

|cos nx|2
  = 

1


 

0

2

F(x) cos nx dx and 

bn = 
F(x) | sin nx

|sin nx|2
  = 

1


 

0

2

F(x) sin nx dx . 

 

 A function in TN must be continuous and have 

period 2. But by no means does every such function 

belong to TN. However if F(x) is continuous and has 

period 2 then it can be approximated by a function in TN, 

with the approximation getting better as N becomes 

larger. Even functions with period 2 having some 

discontinuities can be so approximated. (We won’t go 

into details here as to the precise conditions, or how close 

the approximation will be.) 

 

Example 15: Find the Fourier series for the function F(x) 

on [0, 2] if: 



F(x) = x if 0  x  /2

F(x) =  − x if /2  x  3/2

x − 2 if 3/2  x  2
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Answer: The solution involves a fair bit of integration by 

parts and, since this is not a calculus course, we omit the 

details and simply give the answer. 

F(x) = 
4


 






sin x

12  + 
sin 3x

32  + 
sin 5x

52  + … . 

 

 

 

 

 

 

 

 

 

 

§3.5. Orthogonal Complements 
 In ℝ3 the normal to a plane through the origin is a 

plane through the origin. Every vector in the plane is 

orthogonal (i.e. perpendicular if they are non-zero) to 

every vector along the line. The line and the plane are said 

to be orthogonal complements of one another. 

  

/2 

2 

 

/2 

O 

3/2 

−/2 
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 The orthogonal complement of a subspace U, of 

V is defined to be: 

U⊥ = {v  V | u | v = 0 for all u  U}. 

Intuitively it would seem that U⊥⊥ should be U, but there 

are examples where this is not so. However for finite-

dimensional subspaces it is true. This follows from the 

following important theorem. 

 

Theorem 7: If U is a finite-dimensional subspace of the 

vector space V then U⊥ is also subspace of V and 

V = U  U⊥. 

Proof: (1) U⊥ is a subspace of V. 

Let v, w  U⊥ and let u  U. 

Then u | v + w = u | v + u | w = 0 + 0 = 0. 

Hence v + w  UT. 

Let v  U⊥ and let  be a scalar. 

Then u | v =u | v =.0 = 0. 

Hence v  U⊥ and so we have shown that U⊥ is a 

subspace. 

 

(2) U  U⊥ = 0. 

Suppose v  U  U⊥. Then v is orthogonal to itself, and 

so v | v = 0. By the axioms of an inner product space this 

implies that v = 0. 
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(3) V = U + U⊥. 

Let u1, …, un be an orthonormal basis for U. 

Let v  V, u = v | u1u1 − … − v | unun and 

let w = v − u. 

Then for each i, 

w | ui = v | ui − v | uiui | ui since 

                                                               uj | ui = 0 if i  j 

            = v | ui − v | ui since ui | ui = 1 

            = 0. 

Hence w  U⊥. Clearly u  U. 

So v = u + w  U + U⊥. ☺ 

 

Theorem 8: If U is a subspace of a finite-dimensional 

vector space then U⊥⊥ = U. 

Proof: Suppose u  U and let v  U⊥. Then u | v = 0. 

Hence v | u = 0. Since this holds for all v  U⊥,  and so 

u  U⊥⊥. So it follows that U  U⊥⊥. 

Now V = U  U⊥ = U⊥  U⊥⊥ so dim U = dim U⊥⊥. 

Hence U = U⊥⊥. ☺ 
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EXERCISES FOR CHAPTER 3 
 

Exercise 1: If v1 = (x1, y1) and v2 = (x2, y2) define 

u | v = 2x1x2 − 2x1y2 − 2x2y1 + 5y1y2 and 

             [u | v] = 2x1x2 + 2x1y2 + 2x2y1 + y1y2. 

Show that under one of these products ℝ2 becomes a 

Euclidean space and under the other it is not a Euclidean 

space. 

 

Exercise 2: Find an orthonormal basis for 

(2, 2, 1), (3, 1, −5). 

 

Exercise 3: Find an orthonormal basis for 

(1, 0, 1, 1, 1), (2, 4, 1, 0, 1), (0, 1, 1, 1, 0), 

                                                          (0, 1, 1, −2, 1) . 

 

Exercise 4: Find an orthonormal basis for 

V = v1, v2, v3, v4, v5 

if v1 = (1, 1, 1, 1, 1), v2 = (−1, 1, −1, 1, −1), 

    v3 = (2, 4, 8, 16, 32), v4 = (−2, 4, −8, 16, −32), 

    v5 = (3, 9, 27, 81, 243). 

WARNING: This is a trick question. You don’t need to 

do any computation! 

 

Exercise 5: Find an orthonormal basis for the function 

space 1, x, x where 

u(x) | v(x) = 

0

1

u(x)v(x) dx . 
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Exercise 6: Find an orthonormal basis for the function 

space 1, 2x, cos x where 

u(x) | v(x) = 

0



u(x)v(x) dx . 

 

Exercise 7: Find the orthogonal complement of  

(1, 3, 6), (2, 1, 2) in ℝ3. 

 

Exercise 8: Find the orthogonal complement of 

(1, 1, 1, 1), (1, 0, 1, 0) in ℝ4. 

 

Exercise 9: Find the orthogonal complement of 1, x in 

the vector space 1, x, x2, where 

u(x) | v(x) is defined to be 

0

1

u(x)v(x) dx . 
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SOLUTIONS FOR CHAPTER 3 
 

Exercise 1: Axioms (1), (2), (3) are easily checked for 

both products. 

The simplest way to check them is to let A = 








−

−

32

22
 

and B = 








12

22
. 

Then u | v = uAvT and [u | v] = uBvT. It is now very 

simple to check these first three axioms. 

 

(4) If v = (x, y) then 

v | v = 2x2 − 4xy + 5y2 = 2(x − y)2 + 3y2  0 for all x, y. 

[v | v] = 2x2 + 4xy + y2 = 2(x + y)2 − y2. When x = 1 and y 

= − 1 this is negative. Hence under the product [u | v]  ℝ2 

is not a Euclidean space. 

(5) If v | v = 0 then x = y and y = 0 so v = 0. 

Hence under the product v | v, ℝ2 is a Euclidean space. 

 

Exercise 2: 

 v u |u| w 

1 (2, 2, 1) (2, 2, 1) 3 1

3
 (2, 2, 1) 

2 (3, 1, −5) (1, −1, −6) 38  1

38
 (1, −1, −6) 
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WORKING: u1 = v1 = (2, 2, 1) 

                        u2 = v2 − 
v2|u1

|u1|
2  u1 

                                            = (3, 1, −5) − 
3

3
 (2, 2, 1) 

                             = (1, −1, −6). 

 

Exercise 3: 

 

 1 2 

v (1, 0, 1, 1, 1) (2, 4, 1, 0, 1) 

u (1, 0, 1, 1, 1) (1, 4, 0, −1, 0) 

|u|2 4 18 

w 1

2
 (1, 0, 1, 1, 1) 

1

3 2
 (1, 4, 0, −1, 0) 

 

 3 4 

v (0, 1, 1, 1, 0) (0, 1, 1, −2, 1) 

u (−2, 3, 1, 1, −2) (−4, −7, 9, −14, 9) 

|u|2 19 423 

w 1

19
 (−2, 3, 1, 1, −2) 

1

3 47
 (−4, −7, 9, −14, 9) 

 

WORKING: u1 = v1 = (1, 0, 1, 1, 1) 

                       u2 = v2 − 
v2|u1

|u1|
2  u1 

                           = (2, 4, 1, 0, 1) − 
4

4
 (1, 0, 1, 1, 1). 

                           = (1, 4, 0, −1, 0). 
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u3 = v3 − 
v3|u1

|u1|
2  u1 − 

v3|u2

|v2|
2  u2 

    = (0, 1, 1, 1, 0) − 
2

4
 (1, 1, 0, 1, 1) − 

3

18
 (1, −3, 4, 1, 1). 

Multiply by 6. 

Now u3 = (0, 6, 6, 6, 0) − (3, 3, 0, 3, 3) − (1, −3, 4, 1, 1) 

             = (−4, 6, 2, 2, −4). 

Divide by 2. Now u3 = (−2, 3, 1, 1, −2). 

u4 = v4 − 
v4|u1

|u1|
2  u1 − 

v4|u2

|u2|
2  u2 − 

v4|u3

|u3|
2  u3 

     = (0, 1, 1, −2, 1) − 
0

4
 (1, 4, 0, −1, 0) − 

8

18
 (1, 4, 0, −1, 0) 

                                                         − 
0

19
 (−2, 3, 1, 1, −2). 

Multiply by 9. 

Now u4 = (0, 9, 9, −18, 9) − (4, 16, 0, −4, 0) 

             = (−4, −7, 9, −14, 9). 

 

Exercise 4: Here we have 5 vectors in a 5-dimensional 

vector space. V will be ℝ5, provided the vectors are 

linearly independent. Indeed they are, because if you 

write them as the rows of a 5  5 matrix you will get a 

Vandermonde matrix that is clearly non-zero. Hence the 

vectors are linearly independent and so V = ℝ5. So all we 

need to do is to write down an orthonormal basis for ℝ5 

and an obvious choice is the standard basis: 

e1 = (1, 0, 0, 0, 0), e2 = (0, 1, 0, 0, 0), e3 = (0, 0, 1, 0, 0), 

e4 = (0, 0, 0, 1, 0), e5 = (0, 0, 0, 0, 1). 
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If you had taken the trouble to follow through the Gram-

Schmidt algorithm you would most likely have ended up 

with a different, and far more complicated, orthonormal 

basis. Remember that orthonormal bases are not unique. 

 

Exercise 5: 

 v u |u| w 

1 1 1 1 1 

2 x 3x − 2 1

2
  2(3x − 2) 

3 x 10x − 12x + 3 1

3
  3(10x − 12x + 3) 

 

WORKING: u1(x) = v1(x) = 1. 

v2(x) | u1(x) = 

0

1

x dx = 






2

3 x3/2  
1

0  = 
2

3 . 

u2(x) = v2(x) − 
v2(x) | u1(x)

|u1(x)|2
 u1(x) 

         = x − 
2/3

1
 .1 = x − 

2

3
 . 

Multiply by 3, so now u2(x) = 3x − 2. 

|u2(x)|2 = 

0

1

(3 x − 2)2 dx  

            = 

0

1

(9x − 12 x + 4)dx  
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                 = 






9

2x2 − 8x3/2 + 4x  

1

 

0
  

            

                 = 
9

2  − 8 + 4 

                  = 
2

1
. 

 

v3(x) | u1(x) = 

0

1

x dx = 






1

2 x2  
1

0  = 
1

2 . 

v3(x) | u2(x) = 

0

1

x(3 x − 2) dx  

= 3

0

1

x3/2 dx  − 2

0

1

x dx  

= 3






2

5 x5/2  

1

 

0
  − 2







1

2 x2  

1

 

0
  

= 
6

5  − 1 = 
1

5 . 

 

u3(x) = v3(x) − 
v3(x)|u1(x)

|u1(x)|2
 u1(x) − 

v3(x)|u2(x)

|v2(x)|2
 u2(x) 

         = x  − 
1/2

1
 .1 − 

1/5

1/2
 (3x − 2) 

         = x − 
1

2
  − 

2

5
 (3x − 2) = x − 

6

5
 x + 

3

10
  

. 
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Multiplying by 10 we now take u3(x) = 10x − 12x + 3. 

|u3(x)|2 = 

0

1

(10x − 12 x + 3)2 dx  

            = 

0

1

(100x2 + 204x + 9 − 240x3/2 − 72 x) dx  

            = 






100

3 x3 + 102x2 + 9x − 96x5/2 − 48x3/2  

1

 

0
  

            = 
100

3  + 102 + 9 − 96 − 48 

            = 
1

3 . 

             

            

Exercise 6: 

 1 2 3 

v 1 2x cos x 

u 1 x −  
cos x + 

6

3 (x 

− ) 

|u|2  3

3
  

 

w 1


  

3

3 (x − ) 
 

 

  



 106 

WORKING: u1(x) = v1(x) = 1. 

|u1(x)|2 = 

0



dx = . 

v2(x) | u1(x) = 

0



2x dx = 2. 

u2(x) = v2(x) − 
v2(x)|u1(x)

|u1(x)|2
 u1(x) 

          = x − 
2


 .1 = x − . 

|u2(x)|2 = 

0



(x − )2 dx  

            = 

0



(x2 − 2x + 2) dx 

            = 






1

3 x3 − x2 + 2x  


 

0
  

            = 
3

3
 − 3 + 3 = 

3

3
 . 

 

v3(x) | u1(x) = 

0



sin x dx = [ ]− cos x  


0  = 1 + 1 = 2. 

v3(x) | u2(x) = 

0



(x − )sin x dx  
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                   = 

0



x sin x dx − 

0



sin x dx  

We integrate the first integral by parts and obtain . 

The second integral = 2. 

Hence v3(x) | u2(x) = −. 

u3(x) = v3(x) − 
v3(x)|u1(x)

|u1(x)|2
 u1(x) − 

v3(x)|u2(x)

|u2(x)|2
 u2(x)  

         = sin x  − 
2


 .1 − 

−

3/3
 .(x − ) 

         = sin x − 
2


  + 

3

2 (x − ). 

Multiplying by 2 we now take u3(x) = 2 sin x + 3x − 5. 

 

Exercise 7: 

First Solution:  Let u1 = (2, 1, 2) and u2 = (2, 3, 6). 

Suppose (x, y, z) is orthogonal to both u1 and u2. Then 2x 

+ y + 2z = 0 and 2x + 3y + 6z = 0. 










6

2

32

12
 → 









4

2

20

12
 → 









2

2

10

12
 → 









2

0

10

02
 so x= 0, z 

= k, y = −2k. 

Hence the orthogonal complement is (0, − 2, 1). 

 

Second Solution: We could take, as a third vector (1, 1, 

1), being outside of the space spanned by a and b, and use 

the Gram Schmidt process. However we are content with 

an orthogonal basis. 
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 u = basis v = orthogonal basis |v|2 

1 (2, 1, 2) (2, 1, 2) 9 

2 (2, 3, 6) (−5, 2, 4) 45 

3 (1, 1, 1) (0, 2, −1)  

WORKING: 

v2 = u2 − 
u2 | v1

|v1|
2  v1 

     = (2, 3, 6) − 
19

9
 (2, 1, 2). 

Multiply by 9 to get the new v2 to be v2 = 9(2, 3, 6) − 19(2, 

1, 2) 

                                                             = (18, 27, 54) − 

(38, 19, 38) 

                                                             = (−20, 8, 16). 

Perhaps it would now be a good idea to divide by 4 to get 

a new v2 as v2 = (−5, 2, 4). 

u3 | v1 = 5 and u3 | v2 = 1. 

v3 = u3 − 
u3 | v1

|v1|
2  v1 − 

u3 | v2

|v2|
2  v2 

    = (1, 1, 1) − 
5

9
 (2, 1, 2) − 

1

45
 (−5, 2, 4) 

Multiply by 45 to get a new v3 as v3 = (45, 45, 45) − (50, 

25, 50) − (−5, 2, 4) 

                                                       = (0, 18, −9). 

Divide by 9 to get a new v3 as v3 = (0, 2, −1). 

Hence the orthogonal complement is (0, 2, −1). 
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Third Solution: A third method, that only works for ℝ3, 

is to simply find u1  u2. 

u1  u2 = 

632

212

kji

= (6 − 6)i − (12 − 4)j + (6 − 2)k = (0, 

−8, 4). So the orthogonal complement is 

(0, −8, 4) = (0, 2, −1). 

You can make up your own mind as to which is the easiest 

method! 

 

Exercise 8: Here we cannot use the vector product. 

Suppose (x, y, z, w) is orthogonal to both vectors. Then 

we have a system of two homogeneous linear equations 

that is represented by 










0101

1111
 → 









−− 1010

1111
 → 









1010

1111
. 

So w = h, z = k, y = −h, x = −k, for some h, k. This gives 

the vector (−k, −h, k, h). 

Taking h = 1, k = 0 and h = 0, k = 1, we get a basis for the 

orthogonal complement, which is 

(0, −1, 0, 1), (−1, 0, 1, 0). 

 

Exercise 9: ( ) dxcxbxa 1.

1

0

2

 ++ = 
0

1

32

32









++ x

c
x

b
ax = a + 

b

2
 + 

c

3
  and 
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( ) dxxcxbxa .

1

0

2

 ++ = 
0

1

432

432









++ x

c
x

b
x

a
= 

a

2
  + 

b

3
 + 

c

4
 . 

Hence w(x) = a + bx + cx2 is orthogonal to both 1 and x if  

a + 
b

2
 + 

c

3
  = 0  and  

a

2
  + 

b

3
 + 

c

4
 = 0. 

We solve the homogeneous system 








346

236
 → 










− 110

236
. 

This gives c = k, b = k, 6a = −5k. 

Take k = 6. Then a = −5, b = 6, c = 6 and hence w(x) = −5 

+ 6x + 6x2. 

Hence the orthogonal complement is 6x2 + 6x − 5. 

 


