3. INNER PRODUCT
SPACES

83.1. Definition

So far we’ve studied abstract vector spaces. These
are a generalisation of the geometric spaces R? and R®,
But these have more
structure than just that of a
vector space. In R? and R®
we have the concepts of
lengths and angles. In those
spaces we use the dot
product for this purpose,
but the dot product only
makes sense when we have
components. In the absence
of components we
introduce something called ,
an inner product to play | HES INToUCH WITH HIS
the role of the dot product. IWNEE BRODMEE,
We consider only vector  2o08 OCOuRTNEY GIBRNS
spaces over C, or some
subfield of C, such as R.

An inner product space is a vector space V over
C together with a function (called an inner product) that
associates with every pair of vectors in V a complex
number (u | v) such that:
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(D v|w={l[v)forallu,veV;
@) u+v|iw)y=u|w)+(v|w)forallu,v,w eV,
) Au|vy=Mu|v)forallu,ve Vandall A € F;
(4)(v|vyisrealand >0 forall v € V;
B5)¢(v|v)y=0ifandonly ifv=0.

These are known as the axioms for an inner product space

(along with the usual vector space axioms).

NOTE:

Axioms (2), (3) show that the function u — {u | v) is a

linear transformation for a fixed v.

However u — (v | u) is not linear since

vy = Qulvy=0Mu vy =Muv) =XV | u).

A Euclidean space is a vector space over R, where
(v |u) e R for all u, vand where the above five axioms
hold. In this case we can simplify the axioms slightly:

@O v|uy=<u|vyforallu,v e V;

2 u+v|iwy=u|w)+(v|w)forallu,v,w e V;

) Au|vy=Au|v)forallu,ve Vandall A € F;

@ (v|vy=0forallv e V;

B5)¢(v|vy=0ifandonly ifv=0.

Example 1: Take V = R" as a vector space over R and

define (u|v) = uivy + ... + Unvnh Where
u=(u,...,un)and v=(vi, ..., Vn)

(the usual dot product). This makes R" into a Euclidean

space.
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When n = 2 we can interpret this geometrically as the real
Euclidean plane. When n = 3 this is the usual Euclidean
space.

Example 2: Take V = C" as a vector space over C and
define (u | v) = uivi + ... + UnVn.
u= (U, ...,uy) and v =(vy, ..., Vn).

Example 3: Take V = M,y(R), the space of n x n matrices
over R where (A | B) = trace(ATB).

NOTE: This becomes the usual dot product if we
consider an n x n matrix as a vector with n> components,

n
since trace(A'B) = _Zlaij bij if A = (aij) and B = (bjj).
i,j=

Example 4: Show that R? can be made into a Euclidean
space by defining
(U1 | U2) = 5X1X2 — X1Y2 — XaY1 + Sy1Yo
when ur = (X1, Y1) and uz = (X, Ya).
Solution: We check the five axioms.
(l) <U2 | U1> = B5Xox1 — Xoy1 — Xay2 + 5y2y1 = <U1 | U2>.
(2) If us = (xs, y3) then {u; + uz | us)
=5(X1 + X2)X3 — Xa(Y1 *+ Y2) — (X1 + X2)ys + 5(y1 + Y2)ys
= OX1X3 + OXoX3 — XaY1 — X3Y2 — X1Y3 — X2Y3 + DY1ys + DYays
= (5X1X3 — X3Y1 — X1Y3 + SY1Y3) + (5XoX3 — X3Y2 — X2Y3 + SY2Ys3)
= (U1 | us) + (U2 | us).
(3) (A1 | Uz) = 5(AxX1)X2 — X2(Ay1) — (AX)y2 + S(Ay1)Y2
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A[5X1X2 — Xay1 — X1y2 + 5Y1Yo]
AUz | us).
(4) 1fv =(x,y)then (v | V) = 5x?— 2xy + 5y?

= 5(x2 — 2xy/5 + y?)

= 5(x — y/5)? + 24y?/25

>0 forall x,y.
B)(v|vy=0ifandonlyifx=y/5andy =0, that is, if and
only ifv=0.

Now we move to a rather different sort of inner
product, but one that still satisfies the above axioms. Inner
product spaces of this type are very important in
mathematics.

Example 5: Take V to be the space of continuous
functions of a real variable and define

2n
U | v(x)) = Suv(x) dx
0

Axioms (1), (2) and (3) are fairly obvious. For (4) we need

21
to show that [v(x)>dx for all functionsv(x). This is
0
21
obvious. Finally if [v(x)?dxthen v(x) = O (the zero
0

function).
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83.2. Lengths and Distances

The length of a vector in an inner product space is

defined by:

IV =V V)
(Remember that (v | v) is real and non-negative. The
square root is the non-negative one.) So the zero vector is
the only one with zero length. All other vectors in an inner
product space have positive length.

Example 6: In R3, with the dot product as inner product,

the length of (x, y, z) is \/X? + y? + 22 .

Example 7: If V is the space of continuous functions of a
real variable and

1
(u(x) | v(x)) = Su(x)v(x) dx
0

1
then the length of f(x) = x? is Sxtdx = L :
. \5

The following properties of length are easily proved.

Theorem 1: For all vectors u, v in an inner product space,
and all scalars A:

(1) [Av] = [A].|v];

(2) [v| = 0;

(3)|v|=0ifandonly ifv=0. %©
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Theorem 2 (Cauchy Schwarz Inequality):

Ku [ V)] < ful.|v].
Equality holds if and only if u = % |
ulv)

Proof: Let x = VE

Now |u — xv[> = (U — XV | u — XV)
= Ul u) =XV Uy = XU V) +X X(V]v)
=|uP=2x X V2 +x x|v
= |ul? = xPIvf?

THE CAUCHY-SCHWARZENEGGER INEQUALITY

spikedmath.com
& 2010

Example 8: In R" we have (in yi)zﬁ (inzxz yiz).

Example 8: (}f(x)g(x) dxj 2 < (}f(x)2 dxj (}g(x)2 dxj :
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The Triangle Inequality in the Euclidean plane
states no side of a triangle can be longer than the sum of
the other two sides. It is usually proved geometrically, or
appealing to the principle that the shortest distance
between two points is a straight line. In a general inner
product space we must prove it from the axioms.

Theorem 3 (Triangle Inequality):
For all vectors u, v: [u+Vv|<|u| + |v|.
Proof: [u+Vv2P={Uu+v|u+v)
=Uuy v vy +u|v) +(v|u)
= uf? + |v[* + 2Re({u | v))
< JuP + VP + 2Ku | V)
< |uP? + [V + 2Jul.|v]
< (|uf + [v])?
Sofu+v|<|ul+ v Y©

We define the distance between two vectors u, v to
be |u — v|. The distance version of the Triangle Inequality
is as follows. If u, v, w are the vertices of a triangle in an
inner product space V then [u —w| < |u—vVv|+ |v—w|. It
follows from the length version as

u—w=Uu-v)+((v-w).
If we take u, v, w to be vertices of a triangle in the
Euclidean plane this gives the geometric version of the
Triangle Inequality.
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§3.3. Orthogonality

It isn’t possible to define angles in a general inner
product space, because inner products need not be real.
But in any Euclidean space we can define these
geometrical concepts even if the vectors have no obvious
geometric significance.

Now we can use the Cauchy Schwarz inequality to define
the angle between vectors. If u, v are non-zero vectors the

Mj . The

angle between them is defined to be cos*l(|u| v

ulv)

Jul.|v]
between —1 and 1. The angle between the vectors is n/2 if
and only if (u | v) = 0.

Cauchy Schwarz inequality ensures that lies

Example 9: Suppose we define the inner product between

two continuous functions by:
/2

) [ ve)) = Su()v(x) dx..
0

If u(x) = sin x and v(x) = x find the angle, between them
in degrees.
/2
Solution: (u(x) | v(x)) = [fx sin x dx
0
i /2
=[sin x — xcos x]
(integrating by parts)
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=1.
/2
U(x) |u)) = Ssin> dx
0
/2

1 —cos 2x
—J 5 dx

0

_[54_1 in 2 }R/Z

b3
4
\/n
5 -

Hence |u(X)| =
/2
Now (v(X) | v(X)) = [x? dx
0
B X_3 /2
-5,
TCS
=57 SO
VO =55

Hence the angle between the two functions is 6 where:

NG

cos 0 = )
7.52

~ 0.9927.
Hence 0, in degrees, is approximately 6.9272°.
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NOTE: Measuring the angle between two functions in
degrees is rather useless and is done here only as a
curiosity. By far the major application of angles in
function spaces is to orthogonality. This is a concept that
is meaningful for all inner product spaces, not just
Euclidean ones.

Two vectors in an inner product space are
orthogonal if their inner product is zero. The same
definition applies to Euclidean spaces, where angles are
defined, and there orthogonality means that either the
angle between the vectors is /2 or one of the vectors is
zero. So orthogonality is slightly more general than
perpendicularity.

A vector v in an inner product space is a unit vector if
Its length is 1.

We define a set of vectors to be orthonormal if they are
all unit vectors and each one is orthogonal to each of the
others. An orthonormal basis is simply a basis that is
orthonormal. Note that there is no such thing as an
‘orthonormal vector’. The property applies to a whole set
of vectors, not to an individual vector.

Theorem 4: An orthonormal set of vectors {vu, ..., vn} IS
linearly independent.

Proof: Suppose Avi + ... + Apvp = 0.

Then (Av1+ ... + Anvn | vr) =0 for each r.
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But (Avi+ ...+ AnVn | Vr) = Aa(Ve | Vi) + ..o+ AndVn | Vi)
= A{Vr | Vi) = Ar

since vy is orthogonal to the other vectors in the set and vy

is a unit vector. Hence each A = 0. %©

Because of the above theorem, if we want to show
that a set of vectors is an orthonormal basis we need only
show that it is orthonormal and that it spans the space.
Linear independences come free.

Another important consequence of the above
theorem is that it is very easy to find the coordinates of a
vector relative to an orthonormal basis.

Theorem 5: If a4, oy, ..., an IS an orthonormal basis for
the inner product space V, and v € V, then

(V]ou)

[l} _ | (Vi)
o e

(V]own)

Proof: Let v = xjo1 + X200 + ... + Xpoin.

Then (v | o) = D xj (i | aj)
i
=Xj(aj| 0 =X,
since the qj are orthonormal. % ©
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Example 10:
122

122 22 1 2 12,
Show that the set (3, 3 3), (— 3 3 —3), (— 3~ 3 3) IS
an orthonormal basis for R? with the usual inner product.

Solution: They are clearly mutually orthogonal and, since

1 4 4

gt g tg = 1they are all unit vectors. Hence they are

linearly independent and so span a 3-dimensional
subspace of R®. Clearly this must be the whole of R3,

Example 11: Find the coordinates of (3, 4, 5) relative to
the above orthonormal basis.

Solution:

((3,4,5)|(1/3,2/3,213)y =7

((3,4,5)| (-2/3, 2/3,-1/13)y = -1

((3,4,5) | (-2/3,-1/3, 2/3)) = 0.

Hence the coordinates are (7, —1, 0).

In other words, (3, 4, 5) = 7@ % %) — (— % % —%)
Example 12: In C? as an inner product space with the
inner product B B
(X1, Y1) | (X2, Y2)) = X1 X2 +Y1 Y2

show that the vectors u= (2 -1, 3 —4i) and

v = (3 —4i,-2/5+ 11/5i) are orthogonal.
Use them to find an orthonormal basis for €.
Solution: (2 —i)(3 + 4i) + (3 — 4i)(-2/5 - 11/5)

=10+5i-10-5i =0.

U =12 — i) +|(3 - 4i)2 =5 + 25 = 30, so Ju| =~/30 .

86



V> = |3 - 4i|* + |( 2/5) + (11/5)if?
121
=9+16+5 + 56
=30

s0 |v| = \/T)

Hence —= \/_o \/—0 Vv is an orthonormal basis.

Theorem 6 (GRAM-SCHMIDT):

Every finite-dimensional inner product space V has an
orthogonal basis.

Proof: We prove this by induction on the dimension of V.
If dim(V) = 0 then the empty set is an orthonormal basis.
Suppose that every vector space of dimension n has an
orthonormal basis and suppose that V is a vector space of
dimension n + 1.

Let (v, ..., Vn+1) be a basis for V and let U = (va, ..., vp).
By the induction hypothesis U has an orthogonal basis

{Ul, ceny Un}.

Define u = vps — <VH|L11||ZU1> Uz
- <\/n|+u1—n||2un> (Vn+1 | Un)un.
Then for each i, (u | uj)
= ot |y = L gy - SR -
—%@ jlupy— .. <<Z+l||u>n>< Un | i)
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(Vn+1 | Up)

wiluy A1

= (Vn+1 | Uj) —

since (Ui | uj) = 0 when i #j
= (Vn+1 | Uj) — (Vn+1 | Uj)
=0.
So u is orthogonal to each of the uj. Define up+1 = u. Then
(us, Uz, ..., un+1) is an orthogonal basis for V.
Corollary: Every finite-dimensional inner product space
V has an orthonormal basis.
Proof: Having obtained an orthogonal basis (ui, ..., Un)

: : 1 : :
we simply So we define wj = m uj for each i and so obtain
|

an orthonormal basis (wy, ..., wp) for V. %©

This is not only a proof of existence, it provides a
recipe for converting any basis into an orthonormal one.
In practice it is inconvenient to normalise the vectors
(divide by their length) as we go, because we will have to
carry these lengths along into our subsequent
calculations. It’s much easier to produce an orthogonal
basis and then to normalise at the end.

Basis (Vi)
Orthogonal basis | (uj)
Orthonormal basis | (w;)
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GRAM-SCHMIDT ALGORITHM
(1) LET u; = vy.
(2) FORr=2TOn, LET

(Vrlus) (Vrluz) (Vrlur-1)
Ur = Vr — U — Uz = oo - Ur—1.
r r |U1|2 1 |U2|2 2 |Ur—1|2 r-1
Multiply by a convenient factor to remove fractions.
u
(4) FORr=1TOn, LETWrzlu—rl.
r

Example 13: Find an orthonormal basis for
V=(1,111),(@1,23,4),(1,-1,1,0)).
Solution:

1 2 3
v |(1,1,1,1)] (@2 3,4) (1,-1,1,0)
u |(1,1,1,1)] (-3,-1,1,3) | (12, -26, 16, -2)
|ul 2 25 61/30
w |1 1 _1
5 (1,1,1,1) 2\/5 (-3,-1,1,3) 3\/% (6,-13, 8,-1)

WORKING: u; = vy,
(V2|uy)

Uz = Vo — 2 U1
|ua|
10
=(1,2,3,4)-(1,1,1, 1)
=(1,2,3,4)-2(1,1,1,1).
U= (2,4,6,8)~5(1,1,1,1) = (-3,-1,1, 3).
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For an orthogonal basis, any vector can be multiplied by
a convenient non-zero scalar to eliminate fractions.

(Vslu1) (V3lup)
Us =V3— |U1|2 Uy — |U2|2 uz

=(L-1,1,0-5(1L11D-(5)(-3-113.

Multiply by 20, so now
us = (20, -20, 20,0) - (5,5,5,5) +(-3,-1, 1, 3)
= (12, -26, 16, -2).

Example 14: Let V be the function space (1, x, x?) made
into a Euclidean space by defining

1
(u(x) [ v(x)) = Su(x)v(x) dx
0

Find an orthonormal basis for V.

Solution:
1 2 3
v |1 X X2
u (1| 2x-1 6x2—6x+1
lu| |1 1 1
\3 \/5
W [ 1]~/3(2x-1)|~/5(6x2—6x+1)

WORKING: u;(x) = vi(x) =1
1

1
0 [0y = fxee=[3x¢] =3,
0
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L 1
us()PP = f1dx=[x] 5= 1.
0

1 1
Ua(X) =Vo(X) —5.1=x-75.

Multiply by 2, so now uz(x) = 2x — 1.

1 1
(va(x) [ us(x)y = f x2dx = [%xﬂ . = % .
0

1 1
(va(X) | u2(X)) = S x3(2x — 1) dx = J (2x3 — x?) dx

0 0
1
1, 1 1
:[§X4—§X3]0=5-
1 1
U202 = S (2x — 1)2 dx = f (4x% — 4x + 1) dx
0 0
1

Wl

:[%x3—2x2+xJO:
us(x) :xz—% —%(Zx— 1)
Multiplying by 6 we take us(X) = 6x?> — 2x — X + 3
= 6x% —6x + 1.

1
Jus(X)]? = f(6x? — 6x + 1)? dx
0

(36x* — 72x3 + 48x% — 12x + 1) dx

O Y—
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1

= [ —18x* + 16x3 — 6x% + x} .
_36
-5

U'IIH

-18+16-6+1

83.4. Fourier Series

The most important applications of inner product
spaces involve function spaces with the inner product
defined by means of an integral. Fourier Series are infinite
series in an infinite dimensional function space. However
it’s not appropriate here to give more than a cursory
overview because to discuss them properly requires not
only a good knowledge of integration, but a deep
understanding of the convergence of infinite series.

For any positive integer n the functions 1, cos nx
and sin nx are periodic, with period 2.
Take the space T spanned by all of these functions.

So T =(1, cos X, €os 2X, ..., Sin X, sin 2x, ...).

Define the inner product on T as

2n
U) [ v = Suv(x) dx
0

T is an infinite dimensional vector space. Clearly, for
every function f(x) € T, f(x + 2rn) = f(x). If f(x) Is a
continuous function for which f(x + 2rt) = f(x) we may ask
whether f(x) € T.

The answer is usually no. Such an f(x) may not be a linear
combination of 1, cos X, cos 2X, ..., Sin X, sin 2x, ... But
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remember that a linear combination is a finite linear
combination. It may well be that f(x) can be expressed as
an infinite series involving these functions. That is, we
o0
might have f (X) = ao + Y_(an cOS nX + bp sin nx) .
n=1

Such a series is called a Fourier series, named after the
French mathematician Joseph de Fourier [1768-1830]. Of
course, for this to make sense we would need this series
to converge, which why we need to know a lot about
infinite series in order to study Fourier series. But suppose
we limit the values of n.

Let Ty =

(1, cos X, €os 2X, ..., cos NXx, sin x, sin 2X, ..., sin NX).
We can show that these 2N + 1 functions are linearly
independent. In fact, they are mutually orthogonal. So Ty
isa 2N + 1 dimensional Euclidean space.

2n
Forn >0, [cos nx]? = fcos?nx dx = & and
0
21
|sin nx|> = [sin’nx dx = .

0

2n

Clearly |1]>= [ dx =2m.
0

(Remember that |1| here is not the absolute value but
rather the length of the function 1.)
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N
By Theorem 5, if F(x) = ag + Y_(an €0S nx + by sin nx)
n=1

F(x) |1 21
then ap = < (ﬁ)lz ) = % JF(x) dx and, ifn>0,
0

21
_ (F(x) | cos nx) = % f F(x) cos nx dx and

"~ |cos nx|?
FX) |sinnx) 12
bn =4 (|s)|r|1 P ) - - fF(x) sin nx dx .

A function in Ty must be continuous and have
period 27. But by no means does every such function
belong to Tn. However if F(x) is continuous and has
period 2r then it can be approximated by a function in Ty,
with the approximation getting better as N becomes
larger. Even functions with period 27 having some
discontinuities can be so approximated. (We won’t go
into details here as to the precise conditions, or how close
the approximation will be.)

Example 15: Find the Fourier series for the function F(x)
on [0, 2x] if:

F(X) =n—xif 1/2 <x < 3n/2

F(x) =xif0<x<n/2 }
X—-2nif3n/2 <x<2rn
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Answer: The solution involves a fair bit of integration by
parts and, since this is not a calculus course, we omit the

details and simply give the answer.

4(sinx sin 3x sin 5x
F(X)=E 12 + 32 + 52

/2

27

/2 T 3n/2

—7t/2

83.5. Orthogonal Complements

In R® the normal to a plane through the origin is a
plane through the origin. Every vector in the plane is
orthogonal (i.e. perpendicular if they are non-zero) to
every vector along the line. The line and the plane are said
to be orthogonal complements of one another.
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The orthogonal complement of a subspace U, of
V is defined to be:

Ut={veV|U|v)=0forallu e U}
Intuitively it would seem that U+ should be U, but there
are examples where this is not so. However for finite-
dimensional subspaces it is true. This follows from the
following important theorem.

Theorem 7: If U is a finite-dimensional subspace of the

vector space V then U is also subspace of V and
V=U®&U.

Proof: (1) U is a subspace of V.

Letv,w e Utandletu e U.

Then{u|v+w)=u|v)+{Uu|w)=0+0=0.

Hencev +w e UT,

Let v e Ut and let A be a scalar.

Then (u | AvYy = Mu|vy= 1.0 =0.

Hence Av e U* and so we have shown that Ut is a

subspace.

(2)UnuUt=0.
Suppose v € U n UL, Then v is orthogonal to itself, and

so (v | v) =0. By the axioms of an inner product space this
implies that v = 0.
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B)V=U+UL

Let uy, ..., uy be an orthonormal basis for U.

Letv e V,u=(v|upu; —... — (v | unun and

letw=v-—u.

Then for each i,

(W [ ui) = (v | ui) = v | ui)Xui | ui) since

Ujluiy=01ifi=j

=(v|uijy—{v|usince {ui| upy=1
=0.

Hence w € U+, Clearly u € U.

Sov=u+weU+U.L %Q

Theorem 8: If U is a subspace of a finite-dimensional
vector space then U+t = U.

Proof: Suppose u € U and let v € UL, Then (u | v) = 0.
Hence (v | u) = 0. Since this holds for all v e U+, and so
u e U So it follows that U < U+,

Now V =U @ Ut =U+ @ U so dim U = dim U
Hence U = U+ % ©
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EXERCISES FOR CHAPTER 3

Exercise 1: If vi = (X1, Y1) and v, = (X2, Y2) define

(U | V) = 2X1X2 — 2X1y2 — 2X2y1 + 5y1y2 and

[U] V] = 2X1X2 + 2X1y2 + 2X2y1 + YiYo.
Show that under one of these products R? becomes a
Euclidean space and under the other it is not a Euclidean
space.

Exercise 2: Find an orthonormal basis for
((2,2,1), (3,1, -5)).

Exercise 3: Find an orthonormal basis for
((1,0,1,1,1),(2,4,1,0,1),(0,1,1,1,0),
0,1,1,-2,1)).

Exercise 4: Find an orthonormal basis for
V= <V1, V>, V3, Vg, V5>
ifvi=(1,1,1,1,1),v.=(-1,1,-1,1, -1),
vs=(2, 4,8, 16, 32), vs = (-2, 4, -8, 16, —-32),
vs = (3,9, 27, 81, 243).
WARNING: This is a trick question. You don’t need to
do any computation!

Exercise 5: Find an orthonormal basis for the function
space (1, \x, X) where

1
() [ v(x)) = Ju()v(x) dx.
0
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Exercise 6: Find an orthonormal basis for the function
space (1, 2x, cos X) where

(ux) [ v(x)) = Su()v(x) dx..
0

Exercise 7: Find the orthogonal complement of
((1,3,6),(2,1,2)) inR®.

Exercise 8: Find the orthogonal complement of
((1,1,1,1),(1,0,1,0))in R4

Exercise 9: Find the orthogonal complement of (1, x) in

the vector space (1, X, x?), where
1

u(x) | v(x)) is defined to be fu(x)v(x) dx .
0
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SOLUTIONS FOR CHAPTER 3

Exercise 1: Axioms (1), (2), (3) are easily checked for
both products.

2 -2
The simplest way to check themisto let A = ( j

-2 3
2 2
and B = 2 1]

Then {u | v) = uAv' and [u | v] = uBv'. It is now very
simple to check these first three axioms.

(4) Ifv=(x,y) then

(V|V)=2x2—4xy + 5y?=2(x — y)> + 3y> > 0 for all x, y.
[V|V]=2x°+4xy + y>=2(x +y)> —y?>. When x =1 and y
= — 1 this is negative. Hence under the product [u | v] R?
is not a Euclidean space.

B) If{v|v)y=0thenx=yandy=0sov =0.

Hence under the product (v | v), R? is a Euclidean space.

Exercise 2:

Vv u ul w

11 (2,2,1) (2,2,1) 3 1(2 2,1)
3 ] )

2| (3,1,-5) | (1,-1,-6) |38

\/% (1, -1, -6)
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WORKING: u; =v; = (2, 2, 1)

_ (Volup)
U = Vo — |U1|2 Uz

=(3,1,-5)-2(2,2,1)

=(1, -1, -6).
Exercise 3:

1 2
\Y; (1,0,1,1,1) (2,4,1,0,1)
u (1,0,1,1,1) (1,4,0,-1,0)
lul? 4 18
w |1 1 _

2(1, 0,1,1,1) N (1,4,0,-1,0)

3 4
v 0,1,1,1,0) 0,1,1,-2,1)
u (-2,3,1,1,-2) (-4,-7,9,-14,9)
|ul? 19 423
w |1 |l 4 _79_
@(2,3,1,1, 2) 3V4_7(4’ 7,9, -14,9)

WORKING: u; =v; = (1,0, 1,1, 1)
(V2|uy)

Uz = Vo — |u1|2 U
4
=(2,4,1,0,1)-7(1,0,1,1,1).
=(1,4,0,-1,0).
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(V3|ug) (Va|uz)
Us =Vz— |U1|2 Ui — |V2|2 Uz

=(0,1,1,1,00-%(1,1,0,1,1) — -5 (1,-3,4,1, 1).

Multiply by 6.
Now uz =(0,6,6,6,0)-(3,3,0,3,3) - (1,-3,4,1, 1)
=(-4,6, 2, 2,-4).

Divide by 2. Now uz = (-2, 3, 1, 1, -2).

(Valur) (Va|uz) (Va|uz)
Ug = V4 — |Ul|2 Uy — |U2|2 U — |U3|2 Us

=(0,1,1,-2,1)~3(1,4,0,-1,0) 1 (1, 4,0,-1,0)

~(-2,3,1,1,-2).

Multiply by 9.
Now us = (0, 9, 9, -18, 9) — (4, 16, 0, —4, 0)
=(-4,-7,9,-14,9).

Exercise 4: Here we have 5 vectors in a 5-dimensional
vector space. V will be R® provided the vectors are
linearly independent. Indeed they are, because if you
write them as the rows of a 5 x 5 matrix you will get a
Vandermonde matrix that is clearly non-zero. Hence the
vectors are linearly independent and so V = R®. So all we
need to do is to write down an orthonormal basis for R®
and an obvious choice is the standard basis:
e1=(1,0,0,0,0),e,=(0,1,0,0,0),e5=(0,0, 1, 0,0),
e;=(0,0,0,1,0),e5=(0,0,0,0,1).
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If you had taken the trouble to follow through the Gram-
Schmidt algorithm you would most likely have ended up
with a different, and far more complicated, orthonormal
basis. Remember that orthonormal bases are not unique.

Exercise 5:
Vi u ul W
1)1 1 1
2 | \x 3Vx -2 VA V2(3VXx - 2)
2
3| X |10x—12Vx+3 vi V3(10x — 12Vx + 3)
3

WORKING: ul(x) vi(X) = 1.
1

(V) | () = Nxdx Sxenfp =5

Uo(4) = Val¥) - <V2?ﬁ) )

—\/X—Z/3 1= \/x——
Multiply by 3, so now u,(x) = 3Vx — 2.

1
u:F = (3 - 2) o

[EY

= f(9x — 12+/x + 4)dx

o
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0
=2 _g+4
1
==
(va(X) | uy(x)) = fx dx = [ xz]é % .
(Va(X) | U2(x)) = f X(3\/x ~2) dx
0
1 1
=3/x¥2dx —2x dx
0 0
2 ! 1 1
=3 = 5/2 — 2= x?
] -2y
6 1
=5 - 1= 5 -
u3(X) = va(x) — J_HJ_L<V3|UX ()l:)llzx ) Ug(X) — J_MJH?"\Z ()lj)igx ) U2(X)
1/2 1/5
=X =7 17 B -2)

1 3
=x-3 —5(3\/x—2):x —\/X+E
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Multiplying by 10 we now take us(x) = 10x — 12+x + 3.

1
|us(X)]2 = J(10x — 12+/x + 3)? dx
0
1
= f(100x% + 204x + 9 — 240x%2 — 72/x) dx
0
100 1
= [TXS +102x? + 9x — 96x°2 — 48x3’2]
0
=132+ 102+ 99648
_1
=3
Exercise 6:
1 2 3
v 1 2X COS X
_ 6
u 1 X—T COS X + 3 (x
— 1)
uP?| = e
3
w |1 3
\ﬁt o (X —m)
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WORKING: uy(x) = vi(x) = 1.

lu(X))? = fdx .
0

(Va(X) | ug(X)) = }ZX dx = n?.

0
) =) A )
=X - n—z d=x-m.
7T

U2(x)[? = f (x — m)* dx

T

T
= J(x® - 2nx + 7?) dx
0

1

= §X3—nX2+n2X
0

-3 7 -3

(va(X) | uy(X)) = }sin x dx = [~ cos x] g =1+1=2.
0

(v3(X) | ux(x)) = }(x — m)sin x dx
0
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T T
= fxsin x dx — 7 J’sin x dx
0 0
We integrate the first integral by parts and obtain .
The second integral =
Hence (v3(X) | uz(x)) = —.

o=~ -

- 2,
=sin X _n'l_n3/3'(x_n)

Cany 2.3
=sinx—— nZ(X_n)'

Multiplying by n2 we now take us(x) = =2 sin X + 3x — 5.

Exercise 7:

First Solution: Let u; = (2, 1, 2) and u; = (2, 3, 6)).

Suppose (X, Y, z) is orthogonal to both u; and u,. Then 2x

+y+2z=0and 2x + 3y + 62 = 0.

(2 12} (2 12) [212} (2 ooj _
— - - sox=0, z

2 36 0 24 0 12 0 12
=k, y =-2k.
Hence the orthogonal complement is {(0, — 2, 1)).

Second Solution: We could take, as a third vector (1, 1,
1), being outside of the space spanned by a and b, and use
the Gram Schmidt process. However we are content with
an orthogonal basis.
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u = basis | v = orthogonal basis [v[?
11 (2,1,2) (2,1,2) 9
2| (2,3,6) (-5,2,4) 45
311,11 0,2,-1)
WORKING:
Vo =Uz2 — <u|i/1|\2ll> Vi

= (2, 3, 6) —139 2,1,2).

Multiply by 9 to get the new v, to be v, =9(2, 3, 6) — 19(2,
1,2)

(18, 27, 54) —
(38, 19, 38)

= (-20, 8, 16).
Perhaps it would now be a good idea to divide by 4 to get
anew v, as vy = (-5, 2, 4).
(U3 | vi)=5 and (U3 | Vo) = 1.

(Us| V1) Uz | V)
V3 = U3 — |V1|2 Vi— |V2|2 V)

=(1,1,1) _g (2,1,2) —%(—5, 2,4)

Multiply by 45 to get a new vs as vz = (45, 45, 45) — (50,
25, 50) — (-5, 2, 4)
= (0, 18, -9).
Divide by 9 to get a new vz as v; = (0, 2, -1).
Hence the orthogonal complement is ((0, 2, —1)).
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Third Solution: A third method, that only works for R,
Is to simply find u; x u,.
i j ok
UpxU=2 1 2/=(6-6)i—(12-4)j+ (6 -2)k =0,
2 3 6

-8, 4). So the orthogonal complement is

((0,-8,4)) =<0, 2, -1)).

You can make up your own mind as to which is the easiest
method!

Exercise 8: Here we cannot use the vector product.
Suppose (X, Yy, z, w) is orthogonal to both vectors. Then
we have a system of two homogeneous linear equations
that is represented by

1111 1 1 1 1 1111

- — :
(1010] (0—10—J (0101]
Sow =h,z=k,y=-h, x=-k, for some h, k. This gives
the vector (—k, —h, k, h).
Takingh=1,k=0and h=0, k=1, we get a basis for the

orthogonal complement, which is
((0,-1,0,1), (-1,0,1, 0)).

) 1 1 b
Exercise 9: '[(a+bx+cx2)1dx= {ax+9x2+gx3} = a+§+
) 2" 3" Jo
C
3 and
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( 1. a b c
j(a+bx+cx2)xdx: Fx2+9x3+fx4} =5 +§+Z'
0 2 3 4 |0

Hence w(x) = a + bx + cx? is orthogonal to both 1 and x if

b ¢ a b c
a+§+§—0 and§+§+z—0.

We solve the homogeneous system (2 j ij
6 3 2
0 -1 1)
This gives ¢ =k, b =k, 6a = -5k.
Take k=6. Thena=-5,b =6, c=6and hence w(x) =-5

+ 6X + 6X2.
Hence the orthogonal complement is (6x? + 6x — 5).
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